
Performance Analysis of FlexRay-based ECU Networks
Andrei Hagiescu1 Unmesh D. Bordoloi1 Samarjit Chakraborty1

Prahladavaradan Sampath2 P. Vignesh V. Ganesan2 S. Ramesh2

1Department of Computer Science, National University of Singapore
2General Motors R&D - India Science Laboratory, Bangalore

{hagiescu, unmeshdu, samarjit}@comp.nus.edu.sg, {p.sampath, prasannavignesh.ganesan, ramesh.s}@gm.com

ABSTRACT
It is now widely believed that FlexRay will emerge as the predom-
inant protocol for in-vehicle automotive communication systems.
As a result, there has been a lot of recent interest in timing and
predictability analysis techniques that are specifically targeted to-
wards FlexRay. In this paper we propose a compositional perfor-
mance analysis framework for a network of electronic control units
(ECUs) that communicate via a FlexRay bus. Given a specifica-
tion of the tasks running on the different ECUs, the scheduling
policy used at each ECU, and a specification of the FlexRay bus
(e.g. slot sizes and message priorities), our framework can answer
questions related to the maximum end-to-end delay experienced by
any message, the amount of buffer required at each communication
controller and the utilization of the different ECUs and the bus. In
contrast to previous timing analysis techniques which analyze the
FlexRay bus in isolation, our framework is fully compositional and
allows the modeling of the schedulers at the ECUs and the FlexRay
protocol in a seamless manner. As a result, it can be used to analyze
large systems and does not involve any computationally expensive
step like solving an ILP (which previous approaches require). We
illustrate our framework using detailed examples and also present
results from a Matlab-based implementation.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems; C.4 [Performance of systems]: Design
studies and modeling techniques
General Terms
Performance, Design

Keywords
Automotive electronics, Bus protocols, FlexRay

1. INTRODUCTION
Since the last two decades there has been a phenomenal increase

in the use of electronic components in automotive systems, result-
ing in the replacement of purely mechanical or hydraulic-implemen-
tations of many functionalities. The main motivation behind this
stems from lower cost, reduced weight, new and innovative func-
tionalities and the need for faster design cycles. In earlier de-
signs, different functions were implemented as stand-alone elec-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

Figure 1: A FlexRay-based network of ECUs, with an application par-
titioned and mapped onto multiple ECUs.

tronic control units (ECUs), with each ECU consisting of one or
more microcontrollers and a set of sensors and actuators. However,
with the rapid increase in the complexity of the different function-
alities, it became imperative to have distributed implementations,
where different parts of a task are implemented on different ECUs
with messages and signals being exchanged between them. For
example, an ECU implementing crash preparation needs inputs
from wheel rotation sensors, radars, and ECUs implementing tasks
such as object detection, data fusion and object selection. Today,
in high-end cars, it is common to have around 70 ECUs exchang-
ing upto 2500 signals between them [1]. Hence, it is infeasible to
connect the different ECUs with point-to-point links. This has led
to the development of bus-based ECU networks, where communi-
cations between multiple ECUs are multiplexed over one or more
shared buses. Consequently, this also gave rise to the need for dif-
ferent communication protocols specifically targeting automotive
communication systems.

Today, the most commonly used protocols [12] include the Con-
troller Area Network (CAN) [2], the Local Interconnection Net-
work (LIN) [10] and the J1850 from the Society for Automotive
Engineers (SAE) [9, 11]. The different protocols can be classified
into two major groups: (i) time-triggered, and (ii) event-triggered.
Communication activities in the latter class are triggered by the oc-
currence of specific events and the protocol defines a policy for
resolving the contention for the shared bus when messages from
multiple ECUs or tasks are ready at the same time. For example,
in the case of CAN, data is segmented into frames and each frame
is labeled with a priority which is used to resolve bus contention.
Time-triggered protocols, on the other hand, schedule communica-
tion activities or frame transfers at predetermined points in time,
which are commonly referred to as slots. The sequence of slots and
their lengths for different message types are statically defined and
the resulting schedule repeats itself infinitely.

284

16.2

Event-triggered protocols are clearly more efficient in terms of
communication bandwidth usage and allow incremental system de-
sign (i.e. new ECUs or tasks can be added without redesigning
the system from scratch). However, they are difficult to analyze
because of their dynamic nature. Hence, verifying timing prop-
erties and detecting faults often become problematic. This poses
a serious hindrance to their deployment when the functions in-
volved are safety-critical and require hard real-time guarantees. On
the other hand, time-triggered protocols are highly predictable in
terms of their temporal behaviour, but suffer from poor communi-
cation bandwidth utilization and are inflexible. The addition of new
ECUs, or the modification of any tasks require a complete redesign
and reevaluation of the entire system.

As a result, recently there has been a lot of emphasis on hybrid
protocols, that combine the time-triggered and event-triggered par-
adigms. Protocols in this class include TTCAN [18], FTT-CAN
[7] and FlexRay [8]. FlexRay is currently backed by many ma-
jor automotive companies and will most likely become the de-facto
standard for automotive communication systems very soon. This
has led to a lot of recent interest in timing and predictability analy-
sis techniques and tool-support targeting FlexRay-based designs.

Our contributions and related work: This paper is in line with
these efforts and proposes an analytical framework for composi-
tional performance analysis of a network of ECUs that communi-
cate via a FlexRay bus. Given a specification of the applications
running on the system, their partitioning and mapping on the dif-
ferent ECUs, their activation rates and the mapping of the result-
ing messages onto the different FlexRay slots along with the mes-
sage priorities (see Figure 1), our framework can be used to answer
various performance analysis-related questions. These include the
maximum end-to-end delay experienced by the different message
types, the amount of buffer space required within a communication
controller associated with an ECU and the utilizations of the differ-
ent ECUs and the FlexRay bus. Our framework can also be used
for deriving the parameters of the FlexRay protocol (e.g. lengths
of the static and dynamic segments and priorities of the messages
mapped onto the dynamic segment). Further, it can help in resource
dimensioning (e.g. designing the various ECUs) and determining
optimal scheduling policies for multitasking ECUs.

In the FlexRay protocol, a communication cycle consists of a
combination of a time-triggered or static (ST) segment and an event-
triggered or dynamic (DYN) segment. Such a communication cy-
cle is repeated in a periodic fashion. The ST segment uses a time-
division multiple access (TDMA) scheme and the DYN segment
uses—what is often referred to as—Flexible TDMA. The ST seg-
ment has all the virtues of a time-triggered paradigm, i.e. the timing
properties of messages mapped onto this segment are highly pre-
dictable. But it is mostly suited for periodic messages and has low
communication bandwidth utilization. The DYN segment compen-
sates this drawback, but suffers from the usual shortcomings of an
event-triggered paradigm. As a result, most of the current imple-
mentations of FlexRay heavily lean towards using only the ST seg-
ment, with the DYN segment being unutilized. The only advan-
tage of FlexRay that is being exploited in this process is its high
bandwidth. To fully utilize the benefits of this protocol, it is impor-
tant that suitable analysis techniques be developed that can provide
timing and performance guarantees for messages mapped onto the
DYN segment as well. This is complicated because of two reasons:
(i) the DYN part of the protocol is more complex than the ST part,
and (ii) the potential messages targeted for the DYN segment tend
to be more irregular (e.g. high-volume multimedia data) than those
mapped onto the ST segment (the DYN segment has been specifi-
cally designed for such messages).

Commercially available design tools for FlexRay-based systems
(e.g. those from dSPACE [6] and DECOMSYS [5]) today mostly
rely on simulation. As a result, they are time consuming to use and
cannot provide formal performance guarantees, which are impor-
tant in the automotive domain. Although formal timing analysis
techniques have been proposed for protocols such as CAN [15, 17]
and TTP [13], none of them seem to extend in a straightforward
manner to model the DYN segment FlexRay.

Very recently, the first attempt to formally model the behaviour
of the DYN segment was reported in [14]. Given the arrival rates of
the different message streams mapped onto the DYN segment, [14]
computes the worst-case delay experienced by any message due to
blocking by the ST segment and contention from higher priority
messages. Computing this worst-case delay was shown to be sim-
ilar to a bin covering problem [4] and was solved using an integer
linear programming (ILP) formulation. Further, computationally
efficient (but pessimistic) heuristics were also presented to bound
this delay. Although, this certainly represents an important step
towards formally analyzing the FlexRay protocol, it suffers from
certain drawbacks which might hamper its application to real-life
problems. The first, and most important of these being that [14] an-
alyzes the FlexRay bus in isolation, i.e. requires the input rates or
periods of the arriving messages and computes the worst-case delay
due to transmission over the bus. A system designer, on the other
hand is typically interested in computing the worst-case end-to-end
delays of messages originating from a sensor, passing over multi-
ple ECUs and the FlexRay bus, and finally activating an actuator
(see Figure 1 for an illustration). In this process, a message stream
arriving at the FlexRay bus need not be purely periodic and might
get modified depending on the scheduling policies on the different
ECUs.

The framework we present in this paper addresses this concern.
It is fully compositional and models both the ECUs and the FlexRay
bus in a seamless manner. Hence, it does not make any a priori as-
sumption on the timing properties of the message streams arriving
at the bus. Further, in contrast to [14]—which is only restricted to
computing the worst-case response times of messages—our frame-
work can be used to answer a wider variety of performance-related
questions and will also be helpful for synthesizing a FlexRay sched-
ule (i.e. determine the slot sizes and message priorities) when max-
imum end-to-end delays are provided as design constraints. Lastly,
our approach does not involve any computationally expensive step
like solving an ILP and would hence scale to real-life settings. We
have implemented our framework using a combination of Java and
Matlab, which can be used as a stand-alone design tool, or can serve
as a plugin to standard tool suites (e.g. DECOMSYS Tools [5]).
Such a plugin can be used to obtain hard performance guarantees,
which can then be cross-validated using simulation.

Organization of the paper: The rest of this paper is organized as
follows. In the next section we briefly discuss the FlexRay proto-
col. In Section 3 we give an overview of our basic framework and
the challenges in modeling the DYN segment of FlexRay. This is
followed by a formal performance model for FlexRay, which is the
main result of this paper. A case study is presented in Section 5,
followed by possible directions for future work in Section 6.

2. OVERVIEW OF FLEXRAY
As mentioned in the previous section, each FlexRay communica-

tion cycle is partitioned into a ST and a DYN segment. The lengths
of these segments need not be equal, but are fixed over the different
cycles (hence these lengths are among the parameters that need to
be determined when the FlexRay schedule is synthesized). The ST

285

Figure 2: Two typical FlexRay communication cycles.

segment is further partitioned into a fixed number of equal-length
slots. Each slot is allocated to a specific task and a task is allowed
to send a message only during its allocated slot. If a task has no
messages to send, then its slot goes empty (i.e. other tasks are not
allowed to use it).

The DYN segment is also partitioned into equal-length slots, but
each slot size is much smaller and is referred to as a minislot. Tasks
which send messages on the DYN segment are assigned fixed pri-
orities. At the beginning of each DYN segment, the highest priority
task is allowed to send a message. The length of such a message
can be arbitrarily long (i.e. can occupy an arbitrary number of min-
islots), but has to fit within one DYN segment. However, if the
task has no message to send, then only one minislot goes empty.
In either case, the bus is then given to the next highest-priority task
and the same process is repeated till the end of the DYN segment.
Further, when its turn comes, a task is only allowed to send a mes-
sage if it fits into the remaining portion of the DYN segment. For
further details of this protocol, we refer the reader to the excellent
description in [14] or to the full specification [8].

As an example, consider eight tasks T1, . . . , T8 mapped onto dif-
ferent ECUs, which send messages on the FlexRay bus. Any mes-
sage sent by a task Ti is labeled as mi. Tasks T1, T2 and T3 send
messages over the ST segment and T4 to T8 over the DYN segment.
For the DYN segment, the priorities of the tasks decrease from T4

to T8. Figure 2 shows two consecutive FlexRay communication cy-
cles resulting from this mapping. In the first cycle, task T2 has no
message to send (hence the corresponding slot in the ST segment
is empty) and in the second cycle T1 and T3 have nothing to send.

Similarly, in the first cycle, tasks T5, T6 and T7 have messages to
send, but not T4 and T8. Hence, there is one empty minislot corre-
sponding to T4 in the DYN segment, followed by the message m5.
The size of m6 is bigger than the remaining length of the DYN seg-
ment, hence it is not sent; instead there is one empty minislot in its
place. This is followed by m7 and another empty minislot resulting
out of no message from T8. In the second cycle, T4 and T5 have
no messages to send, which results in two empty minislots. These
are followed by m6 which could not be sent in the first cycle. The
DYN segment ends with one empty minislot which might either be
because T7 had nothing to send or its message was longer than one
minislot.

It may be noted that (i) the ST and DYN segments are inde-
pendent of each other, and (ii) techniques for analyzing the timing
behaviour of the ST segment are already known (because it uses a
TDMA scheme) [13, 16]. Hence, from now on we will only focus
on modeling the behaviour of the DYN segment (however, we will
of course take into account the blocking effects of the ST segment).

3. BASIC FRAMEWORK
In this section we give an overview of our basic modeling frame-

work and the challenges faced in modeling the DYN segment of
FlexRay. In the next section we show how these challenges are
addressed. Our modeling techniques are motivated by [3], where
a mathematical framework was presented for analyzing the timing
properties of multiprocessor embedded systems. Our main contri-

Figure 3: (a) Rate monotonic scheduling of two tasks. (b) Correspond-
ing scheduling network.

bution in this paper lies in appropriately modifying this framework
to model the FlexRay protocol, which turns out to be a non-trivial
task, as we show in this section.

The system architectures we are interested in consist of multiple
ECUs communicating via a FlexRay bus. One or more applications
are partitioned into tasks, which are then mapped onto different
ECUs. ECUs running multiple tasks use a scheduler to share the
available processing resources as shown in Figure 1. Each task is
activated at a certain rate or is triggered by an output from another
task. Once activated, it needs to be processed and hence consumes
a fixed number of processor cycles from the ECU on which it is
running.

The activation rate of any task is upper- and lower-bounded by
two functions αu(∆) and αl(∆). Let R(t) be the total number
of times a task is activated during the time interval [0, t]. Then
αl(∆) = mint≥0{R(t+∆)−R(t)} for any ∆. Similarly, αu(∆) =
maxt≥0{R(t+∆)−R(t)}. Hence, αu(∆) and αl(∆) denote the
maximum and minimum number of times the task can be activated
within any interval of length ∆. Similarly, let βu(∆) and βl(∆)
be upper and lower bounds on the service available to this task. Let
S(t) be the number of activations of this task that were serviced
during the time interval [0, t]. Then, βl(∆) = mint≥0{S(t+∆)−
S(t)} for any ∆, and βu(∆) = maxt≥0{S(t+∆)−S(t)}. If there
are multiple tasks running on an ECU, the service bounds βu and
βl available to any task will clearly depend on the scheduling pol-
icy used by the ECU. Further, if βu(∆) and βl(∆) are expressed
in terms of the maximum and minimum number of processor cy-
cles available within any time interval of length ∆, then they can
be easily converted to represent the service in terms of the number
of task activations that can be serviced, by scaling them with the
execution requirement of an activation.

Now, let each serviced activation of a task generate a message
and αu′(∆) and αl′(∆) denote upper and lower bounds on the
number of such messages generated within any time interval of
length ∆. Such messages can activate other tasks on the same ECU,
or might be transferred over the FlexRay bus to trigger tasks run-
ning on other ECUs. It can be shown that:

αl′(∆) = min{ inf
0≤µ≤∆

{sup
λ>0

{αl(µ+λ)−βu(λ)}+βl(∆−µ)}, βl(∆)}

αu′(∆) = min{sup
λ>0

{ inf
0≤µ<λ+∆

{αu(µ)+βu(λ+∆−µ)}−βl(λ)}, βu(∆)}

Similarly, the bounds on the remaining service after processing
the activations of this task is given by:

βl′(∆) = sup
0≤λ≤∆

{βl(λ) − αu(λ)}

βu′(∆) = max{ inf
λ>∆

{βu(λ) − αl(λ)}, 0}

286

Figure 4: (a) αu and αl corresponding to a periodic activation. (b) βu

and βl of an unloaded processor.

Figure 5: (a) Upper and lower bounds on the remaining service after
processing task T1. (b) Bounds on the messages generated by T2.

To see the utility of these bounds, consider the setup shown in
Figure 3(a). It shows two tasks T1 and T2, which are being sched-
uled using a rate monotonic scheduler. Both T1 and T2 are activated
periodically, with T1’s period being 4 time units and T2’s period
being 9 time units. Each activation of T1 and T2 requires 1 and
2 processor cycles respectively to process. The upper and lower
bounds on the activation of T2 (i.e. αu

2 and αl
2) are shown in Fig-

ure 4(a). They are similar for T1, except for the difference in the
length of the period. The upper and lower bounds on the service
offered by the unloaded ECU (in terms of the number of proces-
sor cycles available over any time interval) is shown in Figure 4(b)
(note that these bounds coincide for obvious reasons). Since T1

has a smaller activation period, it has a higher priority (because of
rate monotonic scheduling) and hence the full service offered by
the unloaded ECU is made available to it.

As discussed above, using αu
1 , αl

1 and βu
1 , βl

1 (the service bounds
for the unloaded processor), we can compute βu

1
′ and βl

1
′
, which

are bounds on the remaining service (that is left over after process-
ing T1). This remaining service is now available to the lower-
priority task (i.e. T2). This concept is illustrated in the form of
a scheduling network for rate monotonic (or any fixed priority)
scheduler in Figure 3(b).

β1
′ is used for servicing task T2 (see Figure 5(a)), which along

with α2 can be used to compute upper and lower bounds on the
messages generated by each serviced activation of T2 (β and α of-
ten refer to the tuples βu, βl and αu, αl). These bounds are shown
in Figure 5(b). From this figure, note that this message stream is
periodic with a period of 9 time units and a jitter of 1 time unit. It
is straightforward to see that the distance between αu

2
′, αl

2
′

is equal
to twice the jitter of the message stream.

α′
1 and α′

2 can now be used for computing the load on the bus
and the same technique can be applied to compute the timing prop-
erties of the transmitted messages, which can then trigger tasks on
other ECUs. Further, given αu, αl and βu, βl, it is possible to com-
pute the maximum delay experienced by a task before its activation
is serviced and the maximum number of backlogged activations.
These are given by: delay ≤ supt≥0{infτ≥0{αu(t) ≤ βl(t+τ)}}

Figure 6: (a) Computing maximum delay from αu and βl. (b) Total
service offered by the DYN segment.

and backlog ≤ supt≥0{αu(t) − βl(t)}.
It should be clear by now that although we have used this frame-

work to analyze a processing element (i.e. tasks executing on an
ECU), the same technique is also applicable to communication re-
sources (e.g. buses). For scheduling policies other than fixed prior-
ity, the scheduling network would be different from the one shown
in Figure 3(b). For example, for TDMA, a fraction of β would
be available to T1 and and another fraction to T2. These fractions
would depend on the TDMA slot sizes, but not on the functions α1

and α2.

3.1 Difficulties in Modeling FlexRay
Recall from Section 2 that in the DYN segment of FlexRay, tasks

are given access to the bus in decreasing order of their priorities.
In other words, the task with the highest priority is offered access
to the bus at the start of the DYN segment. Further, once given
access to the bus, a task can occupy it till the end of the current
DYN segment. Hence, the most straightforward approach would
be to model this protocol as a fixed priority scheduler, as shown in
Figure 3(b). Here, β would be used to model the total service of-
fered by the DYN segment and successive β′s would be computed
from the message sizes and message generation rates of the differ-
ent tasks. However, this approach does not work because of the
following properties of FlexRay: (i) A task is only allowed to send
a message if it fits into the remaining portion of the DYN segment,
i.e. a message cannot straddle two communication cycles. (ii) Once
a task misses its turn in the DYN segment (because there were no
ready messages at the beginning of its communication slot), it has
to wait till the next communication cycle before it can access the
bus (which is the TDMA-like property of the DYN segment). (iii)
A task can send at most one message in each DYN segment (where
the maximum length of the message can be equal to the length of
the DYN segment). (iv) One minislot is consumed from the avail-
able service each time a task is not ready to transfer a message,
before the next task is allowed to send its message on the bus.

The modeling framework presented above does not incorporate
these restrictions when representing the service availability of a re-
source using the upper and lower bounds βu(∆) and βl(∆). To see
this, consider Figure 6(a), which shows αu corresponding to the ar-
rival of a single message (of length equal to 10 minislots) that is to
be transmitted over the DYN segment (of length 8 minislots). Here,
the length of each communication cycle (or period) is assumed to
be p time units and the length of the DYN segment is equal to d
time units. The lower bound on the service βl corresponding to
the DYN segment is also shown in this figure. Note that over time
intervals ∆ of length less than or equal to p − d, no service might
be available from the DYN segment due to the blocking by the ST
segment.

Since the length of the message in this case is longer than the
length of the DYN segment, this message will never get transmit-
ted. However, the framework we described above models the mes-

287

Figure 7: (a) Steps 1 and 2 for transforming βl. (b) Shifting the re-
sulting service bound. (c) Blocking time.

sage to be transmitted over two communication cycles, thereby in-
curring a delay equal to the maximum horizontal distance between
αu and βl (see Figure 6(a)).

4. MODELING FLEXRAY
FlexRay – as described in Section 3.1 – restricts the amount of

available service that can actually be used. Hence, while the service
bounds βu(∆) and βl(∆) capture the limits on the total service
available to the DYN segment, we need to model how much of this
service can actually be used.

Towards this, assume that tasks T1, . . . , Tn send messages over
the DYN segment with any message from task Ti being denoted
by mi and has a length of ki minislots. The length of the DYN
segment is assumed to be equal to k minislots (or d time units) and
the length of a communication cycle, as before, is equal to p time
units. Each minislot is assumed to be MS time units long.

Let βl(∆) be the lower bound on the service (expressed in terms
of number of minislots) offered by the unloaded DYN segment to
all the tasks. Further, let βl

i be the service offered by the DYN
segment to task Ti.

It can be shown that each “increasing” segment of the service
curve corresponds to an additional communication slot with a min-
imum length being the increase in the service value. Therefore, the
transformations applied to each slope of the service curve capture
the worst-case increase in the availability of transmission time for
Ti corresponding to the additional available slot contained in the
extension of the interval.

To obtain βl
1, the function βl needs to be algorithmically trans-

formed. The service curve is trimmed to fit the message size re-
quirments. Afterwards, it is delayed to ensure the full availability
of the slot in the specified time interval. The following steps are
used:

1. Extract k1 minislots of service during each communication
cycle from βl. This is because during any communication
cycle at most k1 minislots are available to T1 (since a task
can send at most one message). Nullify the communication
cycles containing less then k1 minislots.

2. Discretize the service bound obtained from Step 1, i.e. con-
vert it into a step-function. This is to model that a message
cannot straddle two communication cycles. Steps 1 and 2 are
shown in Figure 7(a).

3. The resulting service bound is shifted by d time units. This
is again to model that a message has to be completely sent

within a single DYN segment, and must start at the begin-
ning of the communication slot. Note from Figure 7(c) that
any interval ∆ of length less than p + MS × k1 can be po-
sitioned to straddle two communication cycles. Hence, the
minimum service available from the DYN segment over in-
tervals of such length is equal to 0. The shifted service bound
in Figure 7(b) reflects this. It also reflects the property that
once a task misses its turn in the DYN segment, it has to wait
for the next communication cycle.

4. A minislot is lost even when a task does not transmit any
message. This is accounted by subtracting one minislot from
each communication cycle corroborated with an adjusted mes-
sage size of k1 − 1 minislots in the subsequent analysis of
service consumption for messages transmited by task T1.

The resulting service bound, which we denote as βl
1 correctly

represents the minimum or guaranteed service from the DYN seg-
ment that is available to messages from T1. This βl

1 can now
be plugged into the framework outlined in Section 3 to compute
the maximum delay suffered by any m1, the maximum number of
backlogged m1s and the timing properties of the transmitted mes-
sages (which might trigger other tasks). Towards this αu

1 (∆) is
used as an upper bound on the number of messages generated by
T1 within any interval of length ∆.

The service available to the lower priority tasks (i.e. T2, . . . , Tn)
is made up of two components: (i) The remaining service left after
performing transformation 1 (i.e. the service that was unavailable
to T1). This is given by β̄l(∆) = sup0≤λ≤∆{βl(λ) − βl

1(λ)}.
(ii) The service that was unutilized by T1. This can be computed
from βl

1 and αu
1 and is denoted by βl

1
′
. However, βl

1
′

cannot be
directly added to β̄l because it is specific to messages from task T1

(i.e. incorporates message size dependent adjustments such that the
respective service can be consumed just according to the FlexRay
restrictions). So it first needs to be transformed by applying the
“inverse” of Steps 2 and 3 that were applied to βl, and the resulting
function is added to β̄l. This sum then represents the service avail-
able to the lower priority tasks, which is transformed in the same
way as βl, but using information specific to messages from task T2.
This procedure is then repeated for all the tasks T3, . . . , Tn.

To illustrate this scheme, consider the architecture shown in Fig-
ure 8(a), consisting of two tasks T1 and T2 running on two differ-
ent ECUs. T1 generates a periodic stream of messages (denoted by
m1) which are transmitted over the DYN segment of a FlexRay
bus. The transmitted messages trigger T2 on ECU2, which in
turn generates a stream of messages m2 which are also transmit-
ted over the DYN segment of the same bus to an actuator. m1 is
assigned a higher priority than m2 and both m1 and m2 cannot
fit into one DYN segment. Figure 8(b) shows an overview of our
scheme. Here, α1 bounds the arrival rate of m1 at the bus and β is
the service offered by the unloaded bus. β1 is the service available
to m1. β′ is the service remaining from β (i.e. unavailable to m1).
β1

′ is the service that is unutilized by m1 (from what was available
to it). The sum of β′ and β1

′ is the service available to m2. Finally,
the triggering rate of T2 (which is equal to the arrival rate of m2 at
the bus) is bounded by α1

′, that is computed from α1 and β1.

5. CASE STUDY
We implemented our proposed framework using Matlab as the

front-end, which is used for specifying the system architecture along
with the relevant parameters. The back-end, implemented in Java,
handles all the function transformations. In this section we present
a case study based on an Adaptive Cruise Control application (ACC).

288

Figure 8: (a) Example architecture. (b) Overview of our scheme.
Bus ECUs

Message # Minislots Task WCET
m1 64 Data Fusion 19.7 ms
m2 64 Object Selection 1 ms
m3 15 Adaptive Cruise Control 4.3 ms
m4 40 Arbitration 17.6 ms

Actuator control 9 ms
Object detection 12.5 ms

Table 1: System parameters for an Adaptive Cruise Control.

Figure 9: An Adaptive Cruise Control subsystem.

The ACC subsystem consists of three ECUs communicating via
a FlexRay bus (with a communication cycle of 10 ms and DYN
segment of 8 ms, consisting of 72 minislots). ECU1 receives data
from two radar sensors periodically (each with a 30 ms period).
The data from each radar is processed by an Object Detection task
running on ECU1. The processed data streams (m1 and m2) are
sent over the bus to a Data Fusion task running on ECU2, along
with Object Selection and Adaptive Cruise Control tasks. The re-
sulting data stream (m3) is again transmitted over the bus to ECU3

running two other tasks and the final output (m4) is sent to an ac-
tuator, again over the same bus. The scheduling policies for each
ECU are indicated in Figure 9. All the messages are mapped onto
the DYN segment of the FlexRay bus. The values of the relevant
system parameters may be found in Table 1.

Figure 10(a) shows the bounds on the service offered by the un-
loaded bus and the remaining service for messages from other sub-
systems, after processing m1 − m4. Figure 10(b) shows bounds
on the data arrival rates from a radar (α), the lower bound on the
message arrival rate from ECU2 onto the bus (αl

ACC), and the
message arrival rate at the actuator (αl

f). From these bounds the
maximum end-to-end delay (from radar to actuator) turns out to be
393 ms in contrast to a (wrong) back-of-the-envelope calculation
from Table 1, which is only 60 ms.

6. CONCLUDING REMARKS
In this paper we presented a compositional performance model

for a network of ECUs communicating via a FlexRay bus. Our
main contribution was a formal model of the protocol governing the
DYN segment of FlexRay. Throughout this paper we have assumed
all messages from a specified task to be of constant (worst-case)
length. Relaxing this constraint to account for variable length mes-

Figure 10: (a) Bounds on the service for the architecture in Figure 9.
(b) Bounds on the arrival rates of messages.

sages will require certain modifications to our framework which
would be interesting to explore. We are also in the process of ex-
ploring possibilities of integrating our implementation into stan-
dard tools for designing FlexRay-based systems.

7. REFERENCES
[1] A. Albert. Comparison of event-triggered and time-triggered

concepts with regard to distributed control systems. In Embedded
World, Nürnberg, Germany, 2004. www.semiconductors.
bosch.de/pdf/embedded world 04 albert.pdf.

[2] CAN Specification, Ver 2.0, Robert Bosch GmbH.
www.semiconductors.bosch.de/pdf/can2spec.pdf,
1991.

[3] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for
analysing system properties in platform-based embedded system
designs. In DATE, 2003.

[4] J. Csirik, J. B. G. Frenk, M. Labbé, and S. Zhang. Two simple
algorithms for bin covering. Acta Cybernetica, 14(1):13–25, 1999.

[5] DECOMSYS - Dependable Computer Systems, Hardware und
Software Entwicklung GmbH. www.decomsys.com.

[6] dSPACE GmbH. www.dspace.de.
[7] J. Ferreira, P. Pedreiras, L. Almeida, and J. A. Fonseca. The

FTT-CAN protocol for flexibility in safety-critical systems. IEEE
Micro, 22(4):46–55, 2002.

[8] The FlexRay Communications System Specifications, Ver. 2.1.
www.flexray.com.

[9] Class B Data Communications Network Interface, SAE J1850
Srandard, Rev. 2, Nov. 1996. www.interfacebus.com/
Automotive SAE J1850 Bus.html.

[10] Local Interconnect Network Specification, Lin Consortium.
www.lin-subbus.org.

[11] C. A. Lupini, T. J. Haggerty, and T. A. Braun. Class 2: General
Motors’ version of SAE J1850. In 8th Intl. Conf. on Automotive
Electronics, London, 1991.

[12] N. Navet, Y. Q. Song, F. Simonot-Lion, and C. Wilwert. Trends in
automotive communication systems. Proceedings of the IEEE
(special issue on Industrial Communications Systems),
96(6):1204–1223, 2005.

[13] P. Pop, P. Eles, and Z. Peng. Schedulability-driven communication
synthesis for time-triggered embedded systems. Real-Time Systems,
26(3):297–325, 2004.

[14] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of
the FlexRay communication protocol. In 18th Euromicro Conference
on Real-Time Systems (ECRTS), 2006.

[15] K. Tindell, A. Burns, and A. Wellings. Calculating Controller Area
Network (CAN) message response times. Control Engineering
Practice, 3(8):1163–1169, 1995.

[16] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed hard real-time systems. Microprocessing and
Microprogramming, 40(2-3):117 – 134, 1994.

[17] K. Tindell, H. Hanssmon, and A. J. Wellings. Analysing real-time
communications: Controller Area Network (CAN). In IEEE
Real-Time Systems Symposium (RTSS), 1994.

[18] ISO/CD11898-4, Road Vehicles Controller Area Network (CAN)
Part 4: Time-Triggered Communication, International Standards
Organization, Geneva, 2000.

289

